Acer 30-32. 08038 BARCELONA
Tel. 932233319 - Fax 932231637

 SGE MEPS Micro Extraction by Packed Sorbent

EFS en línea para preparación de muestras para CG y CL - de la extracción a la inyección en un proceso único
  • Reduzca el tiempo necesario para preparar e inyectar muestras de horas a minutos
  • Elimine todas las etapas adicionales entre la preparación y la inyección de la muestra
  • Reduzca los volúmenes de tampones y solventes de mL a µL
  • Reduzca la cantidad de muestra requerida a tan poco como 3.6 mL
  • Automatice totalmente el proceso de extracción, concentración e inyección con su inyector automático (modelos compatibles).
¿Qué es MEPS?
MEPS es Micro Extraction by Packed Sorbent y es un nuevo desarrollo en el campo de la preparación y manipulación de muestras. MEPS es la miniaturización de la SPE convencional de volúmenes de lecho empacado de mililitros a microlitros.
La aproximación de MEPS a la preparación de la muestra es adecuada para fases reversas, fases normales, fases de modo mixto o de intercambio iónico. MEPS está disponible en una amplia variedad de fases de SPE convencionales.
El cartucho (Pendiente de Patente), contiene la fase estacionaria y es solidario con la aguja de la jeringa (ver Figura 1).
¿Por qué MEPS?
Históricamente, muchos métodos de preparación de muestras utilizan la extracción líquido-líquido (LLE) que requiere grandes volúmenes de muestra. Las ventajas de la SPE sobre la LLE son que SPE requiere mucho menos tiempo, puede evolucionar a una técnica totalmente automatizada, necesita mucho menos solvente y ofrece selectividad.
MEPS realiza las mismas funciones que SPE: la eliminación de componentes de la matriz que interfieren y el aislamiento y la concentración selectiva de los analitos.
MEPS aumenta las ventajas de la SPE convencional de las maneras siguientes:
  • Reduce significativamente el tiempo necesario para preparar e inyectar las muestras.
  • Puede combinarse con inyectores automáticos de LC y GC - la etapa de extracción e inyección se efectúan en línea usando la misma jeringa.
  • Reduce significativamente el volumen de solventes necesarios.
  • Puede trabajar con muestras tan pequeñas como 3.6 µL, frente a los varios centenares de mL con SPE.

Tamaño de Muestra y Sensibilidad
Las muestras pueden ser tan pequeñas como 10
µL, o, tomando varias alícuotas de 100 µL o 250 µL, pueden concentrarse muestras de 1 mL.
Automatización
La capacidad de extraer muestras y efectuar la inyección en línea usando el mismo dispositivo reduce tanto los tiempos de procesado de muestra como la necesidad de la intervención de un operador.
Vida del sorbente
La vida típica de un cartucho en la extracción de muestras de plasma completo se estima entre 40 y 100 muestras. Estos valores son conservadores y aumentan significativamente en muestras más limpias.
Efecto memoria
La pequeña cantidad de fase en el cartucho MEPS puede limpiarse fácil y efectivamente entre muestras para reducir la posibilidad de contaminacón por arrastre. El proceso de lavado resulta, simplemente, no práctico en los sistemas SPE tradicionales. En un sistema automático, el lavado puede efectuarse mientras se analiza la muestra previa.
Flexible y de fácil uso
Las dimensiones del lecho de sorbente asegura que las prestaciones se mantienen iguales a los sistemas SPE convencionales cuando se usan para la extracción de muestras similares. Los cartuchos MEPS pueden usarse para volúmenes de muestra tan pequeños como 3.6
µL, haciéndolos particularmente atractivos para su uso en línea para el análisis por LC-MS de muestras de volumen limitado.
Cómo se usa MEPS

  • Paso 1: Pase la muestra a través del cartucho MEPS (pueden tomarse uno o más volúmenes)
  • Paso 2: Lave el cartucho MEPS una vez pasando de 20 a 50 µL de solución de lavado a través del cartucho para eliminar interferencias.
  • Paso 3: Eluya el analito pasando solvente a través del cartucho al barril de la jeringa.
  • Paso 4: Inyecte el analito directamente en el inyector.
  • Paso 5: Pase 50 µL de solvente y 50 µL de solución de lavado para preparar el cartucho para la siguiente muestra. Vea un video AQUÍ.

El cartucho MEPS se instala fácilmente en la jeringa y se asegura mediante una tuerca de cierre. El etiquetado individual de cada cartucho asegura la fase estacionaria correcta en cada extracción.
Cuando el adsorbente se agota o se necesita otra fase, el cartucho se cambia fácilmente desenroscando la tuerca de cierre y substituyendo el cartucho (ver Figura 2).
¿Qué prestaciones tiene MEPS?
El tratamiento de muestras biológicas complejas se adapta rápidamente al MEPS y reduce el volumen de muestra y reactivos necesarios cuando se le compara con la SPE convencional y otros "procedimientos de micro extracción".
En la Figura 3 se muestra la extracción de metabolitos de xantina de orina humana cruda con un cartucho MEPS de C18 antes del análisis por GC-MS donde
puede verse como las matrices difíciles como la orina humana se procesan fácilmente con MEPS. En este ejemplo 100 µL de orina humana se aspiraron a través de un cartucho MEPS C18 (acondicionado con metanol y agua, y lavado con agua). Las xantinas adsorbidas se eluyeron con 30 µL de metanol, y 2  µL se inyectaron en una columna BPX5 para su análisis por GC-MS.
En la Figura 4 siguiente, extracción de anestésicos de plasma de rata con un cartucho MEPS de C2, antes del análisis por LC-MS, muestras de plasma de rata fueron dopadas con anestésicos locales a concentraciones finales de 2.4mmol/L, 2.5 mmol/L y 3.0 umol/L para la Lidocaína, la Ropivacaína y la Bupivacaína respectivamente. Se aspiraron 50 µL del plasma dopado a través de un cartucho MEPS C2, lavado con agua y eluído con 0,1% HCOOH en 25% ACN:75% Agua directamente en una columna C18 de 100x2.1mm.
¿Cómo se compara MEPS en Exactitud y Precisión?
La Tabla 1 resume la precisión y la exactitud de los resultados obtenidos en el análisis de Ropivocaína según cuatro métodos de tratamiento de muestras: MEPS, Extracción Líquido-Líquido (LLE), SPE convencional y micro extracción en Fase Sólida (SPME). La comparación con SPME, también una técnica de micro extracción, ha mostrado que MEPS ofrece una mejor precisión y exactitud empleando un tiempo de procesado de la muestra significativamente menor.
La Tabla 2 compara la precisión, la exactitud, los límites de detección y los tiempos de extracción de MEPS frente a otras dos técnicas de micro extracción, SPME y SBSE (Stirring Bar Sorbent Extraction), para cinco PAH’s extraídos de agua. Los resultados de MEPS y SBSE son significativamente mejores que con SPME pero MEPS procesa las muestras en un tiempo 100 veces más rápido que SBSE.

Tabla 1: Comparación de Exactitud y Precisión entre MEPS y otros métodos para ropivacaína (anestésico local)
Método Ropivacaína LD (nM) Exactitud % Precisión (RSD%)
(entre ensayos)
 Tiempo de procesado
(1) MEPS / GC-MS 2 105 5.0 1 min
(2) LLE / GC-MS 2 101 3.8 20 min
(3) SPE / LC-UV 100 101 3.0 20 min
(4) SPME / GC-MS 5 110 6.3 40 min
M. Abdel-Rehim / J. of Chromatography B, 801 (2004) 317-321
Tabla 2: Comparación de Exactitud y Precisión de MEPS, SPME y SBSE en el análisis de PAH’s en agua
Compuesto Exactitud % Precisión (RSD%) Límite detección (ng/L) Tiempo de procesado (min)
  MEPS SPME SBSE MEPS SPME SBSE MEPS SPME SBSE MEPS SPME SBSE
Antraceno 84 81 99 12 3 6 5 100 1.2 2 30 200
Criseno 107 81 100 1 4 5 5 90 0.2 2 30 200
Fluoranteno 100 84 100 9 4 4 5 100 1.2 2 30 200
Fluoreno 103 96 97 5 5 4 1 40 0.7 2 30 200
Pireno 115 86 100 7 3 3 1 40 0.7 2 30 200
M. Abdel-Rehim / J. Chromatog. A 1114 (2006) 234-238
¿El efecto memoria es significativo en MEPS?
Los accesorios de SPE se han considerado tradicionalmente de un solo uso. La ingeniería de precisión usada en el diseño y la fabricación de MEPS permiten simples etapas de lavado y la consiguiente reutilización del cartucho. Para demostrar este punto se han extraído fenoles de agua residual y se ha medido el arrastre de muestra entre experimentos. En la Figura 5 se muestran los cromatogramas de tres extracciones de 10 µL. La primera se ha etiquetado como "fenoles 25 ppb", la segunda "extracción 2" y la tercera "extracción 3". Se ve claramente que en los primeros 10 µL de metanol se eluyen todos los fenoles.
Una de las razones generalmente aducidas para el uso de cartuchos SPE desechables es el problema del efecto memoria.
El resultado de 5 estudios se resume en la Tabla 3.
Usando una serie de lavados con eluyente y luego con solución de lavado, se ha eliminado virtualmente el efecto memoria. Con un ciclo de tiempo medido en segundos, para MEPS este lavado se efectúa en menos de 5 minutos. Para obtener un resultado equivalente en SPE convencional, se requeriría más de una hora y el uso de cantidades bastante significativas de solventes.
Resumen
La Tabla 4 resume la comparación de MEPS, SPME y SPE convencional. MEPS requiere mucho menos tiempo que SPE o SPME, y muestra una recuperación y sensibilidad bastante superiores. MEPS también elimina cualquier etapa intermedia entre la preparación de la muestra y la inyección en el cromatógrafo de Gases o de Líquidos.
Tabla 3: Comparación del arrastre de muestra y régimen de lavado.
Método Volumen Lavado µL #Lavados y Sol. Lavado Arrastre  de Muestra Fuente
PAH’s en agua 50 4 x MeOH, 5 x H2O 0.2-1% M. Abdel-Rehim / J.Chromatog. A 1114(2006) 234-238
Anestésicos en Suero Humano 50 4 x MeOH, 4 x H2O ~0.2% (I.S.) M. Abdel-Rehim / J.Chromatog. B,801(2004)317-321
Roscovitina en Plasma y Orina 50 5X MeOH/H2O (95:5 V/V)
5X MeOH/H2O (90:10 V/V)
<0.1% M. Abdel-Rehim / J.Chromatog. B,817(2005)303-307
Roscovitina en Plasma Humano 50 4 x MeOH, 4 x H2O <0.01% M. Abdel-Rehim / J.Mass Spectrom.204;39:1488-1493
Olomoucina en Plasma Humano 50 5X MeOH/H2O (95:5 V/V)
5X MeOH/H2O (90:10 V/V)
<0.01% M. Abdel-Rehim / Analytica Chimica Acta 2005
Tabla 4: Comparación de MEPS, SPME y SPE convencional
Factor MEPS SPE SPME Fuente
Sorbente (mg) 0.5-2 50-2000 150µm M. Abdel-Rehim / J. of Chromatography B, 801 (2004) 317-321
Prep. Muestra (min) 1-2 10-15 10-40
#Extracciones Cartucho 40 a 100 1 50-70
Recuperación buena buena baja
Sensibilidad buena buena baja
Publicaciones disponibles en MEPS Tipo  

Extraction of Phenols from Waste Water using Micro Extraction by Packed Sorbent (MEPS).
MEPS is the miniaturization of conventional SPE from milliliter to microliter bed volumes that allows SPE to be used with very small samples. The manipulation of the small volumes is achieved with a precision gas tight syringe. With a typical void volume of 7 μL, the MEPS elution is compatible with GC and LC inlets making it ideal for integration into an automated sampling system for on-line SPE.
To demonstrate the usefulness of MEPS for dilute samples with a relatively simple matrix, a surrogate wastewater sample was prepared from clear phenol free waste water spiked with either 25 ppb or 250 ppt phenols.

Aplicación. 345Kb

On-Site Sample Preparation Using MEPS for Waste Water Analysis.
MEPS uses a barrel insert and needle (BIN) device to reduce Solid-Phase Extraction (SPE) to a micro-scale suitable for small volume samples and for the on-line adaptation of conventional SPE techniques. Because the SPE cartridge (BIN) is incorporated into the needle assembly of a gas-tight syringe, MEPS is also a simple field-portable SPE device that may be operated manually without need for sampling pumps or, alternatively, may be incorporated into robotic samplers.To demonstrate the application of MEPS we report the qualitative field use of C18-MEPS for the sampling of water bodies in both industrial and urban environments. Water samples were extracted on-site and then the MEPS syringes were transported back to the laboratory overnight for elution and analysis of the retained components. C18-MEPS was used to extract samples (100-1000 μL) of water from industrial drains and stormwater pipes to recover semi-volatile residues for GCMS analysis (Fig 1-3). The technique was also applied to sampling droplets on surface extracts of paint for non-destructive surface profiling (Fig 2). Analysis of the unknown samples was qualitative but sufficiently sensitive to detect industrial discharge residues associated with grinding coolants, packaging materials and other contaminants. Naturally occurring leachates from vegetation were also detectable. Droplet extraction of a painted surface was performed in reversed-phase mode (water extract on C18 sorbent) and allowed the surface to be profiled for comparative purposes. The same technique could be applied in normal phase (data not shown) using an organic solvent and a silica or C2 sorbent.

Aplicación. 254Kb

MEPS for pollutants and small volume samples.

Ejemplos. 506Kb

Application of MEPS coupled with Gas Chromatography Time-Of-Flight Mass Spectrometry (GC-TOF MS) in Analysis of Brominated Flame Retardants in Waste Water.
In last years, miniaturized analytical techniques had gained attention due to its many special features over classical approaches. Among many advantages, usage of little or no solvent, increasing of sensitivity of analysis and user-friendly system, should be pointed out. Micro extraction in packed sorbent (MEPS) is a new technique for miniaturized solid-phase extraction that can be connected online to gas chromatography (GC) or liquid chromatography (LC) without other sample pre-treatment.1-4 The sample (10–250 μL) is withdrawn through the syringe by an autosampler. When the sample has passed through the solid support, the analytes are adsorbed to the solid phase packed in a barrel insert and needle (BIN). The solid phase is washed afterwards by water to remove any interfering material, and the elution of analytes is performed directly into the instrument’s injector by organic solvent (in case of GC), or the LC mobile phase. The large injected volume, typically 10 to 50 μL, may imply the use of programmed temperature vaporiser (PTV) and large volume injection (LVI). Moreover, a large variety of special packed materials in BIN, such restricted access material (RAM) or molecular imprinted polymers (MIPs), can be used.

Artículo. 284Kb
Development and validation of a liquid chromatography and tandem mass spectrometry method for determination of roscovitine in plasma and urine samples utilizing on-line sample preparation.
Roscovitine, a purine analogue that selectively inhibits cyclin-dependent kinases, has been considered as a potential anti-tumor drug. The determination of roscovitine in plasma and urine was performed using microextraction in packed syringe as on-line sample preparation method with liquid chromatography and tandem mass spectrometry. The sampling sorbent utilized was polystyrene polymer. 2H3-lidocaine was used as internal standard. The limit of detection for roscovitine was as low as 0.5 ng/mL and the lower limit of quantification was 1.0 ng/mL. The accuracy and precision values of quality control samples were between±15% and≤11%, respectively. The calibration curvewas obtained within the concentration range 0.5–2000 ng/mL in both plasma and urine. The regression correlation coefficients for plasma and urine samples were ≥0.999 for all runs. The present method is miniaturized and fully automated and can be used for pharmacokinetic and pharmacodynamic studies.
Artículo. 162Kb
Development of a molecularly imprinted polymer based solid-phase extraction of local anaesthetics from human plasma.
Molecular imprints selective for a homologous series of local anaesthetics, including bupivacaine, ropivacaine and mepivacaine, were prepared and the resultant polymers were used for solid-phase extraction of human plasma. The template was a structural analogue, pentycaine, which was imprinted in methacrylic acid–ethylene glycol dimethacrylate copolymers. Equilibrium ligand binding experiments using radiolabelled bupivacaine were performed to characterize the imprinted polymers, as well as to identify optimal conditions for selective extraction of plasma samples. Dilution of the plasma prior to extraction with citrate buffer pH 5.0 containing ethanol and Tween 20 was found optimal for selective imprint–analyte binding, and for reduction of non-specific adsorption of lipophilic contaminants to the hydrophobic MIP surface. Wash steps using 20% methanol in water followed by a solvent switch to 10% ethanol in acetonitrile removed contaminants and strengthened the selective imprint–analyte binding. Elution under basic conditions using triethylamine–water–acetonitrile mixtures recovered bupivacaine in 89% yield with superior selectivity over elution under acidic conditions. The final protocol extracted trace levels of ropivacaine and bupivacaine from human plasma and allowed determination of bupivacaine in the range of 3.9–500nmol L−1 and ropivacaine in the range of 7.8–500 nmol L−1 with inter-assay accuracies of 94–99 and 95–104%, respectively. This present investigation provides an improved understanding of approaches available for optimization of protocols for molecular-imprint based solid-phase extraction of plasma samples.
Artículo. 123Kb
Fast and sensitive environmental analysis utilizing microextraction in packed syringe online with gas chromatography–mass spectrometry. Determination of polycyclic aromatic hydrocarbons in water.
A new sensitive, selective, fast and accurate technique for online sample preparation was developed. Microextraction in a packed syringe (MEPS) is a
new miniaturised, solid-phase extraction (SPE) technique that can be connected online to GC or LC without any modifications. In MEPS approximately 1mg of the solid packing material is inserted into a syringe (100–250 ml) as a plug. Sample preparation takes place on the packed bed. The bed can be coated to provide selective and suitable sampling conditions. The new method is very promising. It is very easy to use, fully automated, of low cost
and rapid in comparison with previously used methods. The determination of polycyclic hydrocarbons (PAHs) in water was performed using MEPS as sample preparation method online with gas chromatography and mass spectrometry (MEPS–GC–MS). The results from MEPS as sample preparation were compared with other techniques such as stir bar sorptive extraction (SBSE) and solid-phase microextraction (SPME). The method was validated and the standard curves were evaluated by the means of quadratic regression and weighted by inverse of the concentration: 1/x for the calibration range 5–1000 ng/L. The MEPS applied polymer (silica-C8) could be used more than 400 times before the syringe was discarded. The extraction recovery was about 70%. The results showed close correlation coefficients (R > 0.998) for all analytes in the calibration range studied. The accuracy of MEPS–GC–MS was between 90 and 113% and the inter-day precision (n = 3 days), expressed as the relative standard deviation (RSD%), was 8–16%. MEPS reduced the handling time by 30 and 100 times compared to SPME and SBSE, respectively.
Artículo. 166Kb
New trend in sample preparation: on-line microextraction in packed syringe for liquid and gas chromatography applications
I. Determination of local anaesthetics in human plasma samples using gas chromatography–mass spectrometry.
A new technique for sample preparation on-line with LC and GC–MS assays was developed. Microextraction in a packed syringe (MEPS) is a new miniaturised, solid-phase extraction technique that can be connected on-line to GC or LC without any modifications. In MEPS approximately 1mg of the solid packing material is inserted into a syringe (100–250 l) as a plug. Sample preparation takes place on the packed bed. The bed can be coated to provide selective and suitable sampling conditions. The new method is very promising. It is very easy to use, fully automated, of low cost and rapid in comparison with previously used methods. This paper presents the development and validation of a method for microextraction in packed syringe MEPS on-line with GC–MS. Local anaesthetics in plasma samples were used as model substances. The method was validated and the standard curves were evaluated by the means of quadratic regression and weighted by inverse of the concentration: 1/x for the calibration range 5–2000 nM. The applied polymer could be used more than 100 times before the syringe was discarded. The extraction recovery was between 60 and 90%. The results showed close correlation coefficients (R > 0.99) for
all analytes in the calibration range studied. The accuracy of MEPS–GC–MS was between 99 and 115% and the inter-day precision (n = 3 days), expressed as the relative standard deviation (R.S.D.%), was 3–10%.
Artículo. 155Kb
Microextraction in packed syringe (MEPS) for liquid and gas chromatographic applications.
Part II—Determination of ropivacaine and its metabolites in human plasma samples using MEPS with liquid chromatography/tandem mass spectrometry.
A new technique for sample preparation on-line with liquid chromatographic/tandem mass spectrometric (LC/MS/MS) assay was developed. Microextraction in a packed syringe (MEPS) is a new miniaturized, solid-phase extraction technique that can be connected on-line to gas or liquid chromatography without any modifications. In MEPS 1 mg of the solid packing material is inserted into a syringe (100–250 μl) as a plug. Sample preparation takes place on the packed bed. The bed can be coated to provide selective and suitable sampling conditions. The new method is very promising, very easy to use, fully automated, of low cost and rapid in comparison with previously used methods. This paper presents the development
and validation of a method for MEPS on-line with LC/MS/MS. Ropivacaine and its metabolites (PPX and 3-OH-ropivacaine) in human plasma samples were used as model substances. The method was validated and the calibration curves were evaluated by means of quadratic regression and weighted by the inverse of the concentration, 1/x, for the calibration range 2–2000 nM. The applied polymer could be used more than 100 times before the syringe was discarded. The extraction recovery was between 40 and 60%. The results showed high correlation coefficients (R2 > 0.999) for all analytes in the calibration range studied. The accuracy, expressed as a percentage variation from the nominal concentration values, ranged from 0 to 6%. The precision, expressed as the relative standard deviation, at three different concentrations (quality control samples) was consistently about 2–10%. The limit of quantification was 2 nM.
Artículo. 149Kb

The Extraction of Saliva for The Analysis of Basic Drugs Residues Using MEPS™-GCMS.
Oral fluid is considered a desirable sample for regulatory screening of drugs of abuse and for clinical monitoring because it may be collected in a non-
invasive fashion when compared with the procedures used for collection of urine and blood. Unlike urine, the appearance of the drug residues in saliva may
be directly correlated with plasma drug concentrations. The relatively low concentration of most drugs in saliva and the small sample volume that is typically available for analysis makes micro-extractive techniques both attractive and necessary for this matrix. MEPS™ is a micro-scaled SPE device that is incorporated directly into a liquid handling syringe and may be used with robotic autosamplers for on-line chromatographic analysis. The small scale of the MEPS™ device is effective for the extraction of small volume samples and is therefore potentially valuable for the extraction of oral fluids for GC-MS confirmatory analysis. We present here a simple reversed-phase C18-MEPS™ extraction for saliva collected from a patient that had been administered the local anaesthetic mepivacaine for a dental procedure several hours previously.

Artículo. 206Kb

The Micro-Extraction and Detection of Phenolic Anti-Oxidants from Cereal Products Using MEPS™-GCMS.
Synthetic phenolic antioxidants are increasingly rejected as acceptable food additives because of their demonstrable or suspected adverse effects on human health. Among the compounds of concern are the butylated hydroxyphenols such as butylated hydroxy toluene (BHT), butylated hydroxy anisole (BHA) and bisphenol A. Simple methods for the removal of food matrices are necessary for the detection of these compounds in regulatory compliance programmes. Micro-extraction Packed Sorbent (MEPS™) is a solid-phase technique that allows rapid sample extraction by reducing the volume of sample processed. Because the sorbent device is incorporated directly into a liquid handling syringe, it may also used with robotic autosamplers for on-line chromatographic analysis. In this example, rice crackers manufactured with sunflower oil that was stabilized with BHA

Artículo. 967Kb

Measuring Fruit Juice Adulteration by Changes in Flavonoid Content Using MEPS™ and HPLC.
Cranberry and blueberry juice are notable example of functional foods that may be eroded in value by dilution or adulteration with lower value products. The cranberry is known as a source of polyphenolic antioxidants (including anthocyanidin flavonoids, cyanidin, peonidin and quercetin) and is the subject of investigation for potential anti-cancer properties and its effects on the cardiovascular and immune systems. The tannins are reputed to reduce urinary tract infections, exhibit anticlotting properties and reduce gingivitis. Other fruits are also known or reputed to have functional characteristics and therefore of high value. A rapid Micro-Extraction Packet Sorbent (MEPS™) method is described for extracting and concentrating the phenolic components from a variety of commercial fruit juices. The juice was passed through a C8 or C18 MEPS™ cartridge and the retained fraction eluted with methanol for direct injection into a HPLC and analysis on a ProteCo™l C18 GP125 column using a 0.1 % v/v aqueous trifluoroacetic acid – methanol mobile phase. Detection of the phenolic fraction at 350 nm was used to generate a characteristic profile for each species of fruit. The method allowed profiling of fruit juice and the detection of diluents or juice mixtures. Because the solid-phase step is flowrate dependant, the small sample and elution volumes of MEPS™ allow rapid sample extraction that may be completed in realtime with the HPLC analysis.

Artículo. 701Kb
The Extraction and Analysis of Urinary Antitussive Metabolites using MEPS™ and ESI-LCMSn.
Microextraction Packed Sorbent (MEPS™) is an adaptation of SPE into a miniaturized device with a typical void volume of less than 10 μL. With operating volumes of this scale and its compatibility with autosampler syringes, MEPS™ allows the specificity of the solid-phase process to be harnessed for digital chromatography using discontinuous changes in solvent polarity. The eluant volumes are sufficiently small to be injected directly into a HPLC system and therefore permit the on-line use of solid-phase extraction methodology in real time with the HPLC.
Artículo. 122Kb
MEPS: A New Technique for the Analyisis of Small Brominated and Chlorinated Aromatic Compounds in Wine.
The wine industry has long suffered from TCA (2,4,6-trichloroanisole) and TBA (2,4,6 tribromoanisole) contamination or “cork” taint. These compounds more recently has been found to be present in corks, packaging material, cardboard boxes, wooden products and many other materials. Only 1-2 ng/l of TCA or TBA is required to give wine the “musty” aroma associated with cork taint. It has been proposed that chlorophenols are the precursor for TCA (Fig1). As dioxins are known to be present as contaminants in chlorophenol formulations (1) they might therefore also be present in the wine corks, a hypothesis that needs further invesitigation. In this work, the analysis of TCA and TBA is performed by a new technique for sample preparation called Microextraction by Packed Sorbent (MEPS). This technique in combination with different GCMS techniques is described below and compared with other methods.
Artículo. 318Kb
The application of MEPS for the on-site preparation of water samples.
MEPS uses a barrel insert and needle (BIN) device to reduce Solid-Phase Extraction (SPE) to a micro-scale suitable for small volume samples and for the on-line adaptation of conventional SPE techniques. Because the SPE cartridge (BIN) is incorporated into the needle assembly of a gas-tight syringe, MEPS is also a simple field-portable SPE device that may be operated manually without need for sampling pumps or, alternatively, may be incorporated into robotic samplers.
To demonstrate the application of MEPS we report the qualitative field use of C18-MEPS for the sampling of water bodies in both industrial and urban environments. Water samples were extracted on-site and then the MEPS syringes were transported back to the laboratory overnight for elution and analysis of the retained components. C18-MEPS was used to extract samples (100-1000 μL) of water from industrial drains and stormwater pipes to recover semi-volatile residues for GCMS analysis (Fig 1-3). The technique was also applied to sampling droplets on surface extracts of paint for non-destructive surface profiling (Fig 2). Analysis of the unknown samples was qualitative but sufficiently sensitive to detect industrial discharge residues associated with grinding coolants, packaging materials and other contaminants. Naturally occurring leachates from vegetation were also detectable. Droplet extraction of a painted surface was performed in reversed-phase mode (water extract on C18 sorbent) and allowed the surface to be profiled for comparative purposes.
Artículo. 926Kb
The Integration of Microextraction Packed Sorbent (MEPS) into Multidimensional Strategies.
LC-GC approaches to analysis are particularly attractive because they combine the selectivity of solidphase sorbents in the first dimension with the separating power and peak capacity of a capillary GC column in the second and subsequent dimensions. Widespread use of the technique is limited because of the difficultly in desolvating the stream from the LC dimension without the solvent vapour passing down the GC column in significant quantity.
An alternative approach to elution chromatography in the first dimension is to harness the specificity of the solid-phase process for digital chromatography using discontinuous changes in solvent polarity (Fig 1). Digital chromatography on a small sorbent bed reduces the volume of mobile phase to discrete plugs that are sufficiently small to be injected directly into a GC with a large volume injector or, alternatively, subsampled into a conventional split/splitless injector.
Microextraction Packed Sorbent (MEPS) is an adaptation of SPE that incorporates all the desirable characteristics into a miniaturized device with a typical void volume of less than 10 μL. With operating volumes of this scale and its compatibility with autosampler syringes, the MEPS format is the ideal for a digital LC - elution GC approach to analysis.
In this application, we use the selectivity of an argentation sorbent to speciate a mixture of fatty acid methyl esters on the basis of unsaturation in the first dimension and then to separate groups by conventional non-polar GCMS in the second dimension.
Artículo. 740Kb
Argentation Based (MEPS) for the Analysis of FAMES by GCMS.
Micro Extraction by Packed Sorbent (MEPS) is an adaptation of SPE that incorporates all the desirable characteristics into a miniaturized device with a typical void volume of less than 10 μL. With operating volumes of this scale and its compatibility with autosampler syringes, MEPS allows the specificity of the solid-phase process to be harnessed for digital chromatography using discontinuous changes in solvent polarity (Fig 1). The eluant volumes are sufficiently small to be injected directly into a GC with a large volume injector or, alternatively, subsampled into a conventional split/splitless injector and therefore MEPS can be used as a digital LC - elution GC approach to analysis.
In this application, we use the selectivity of an argentation sorbent to speciate a mixture of fatty acid methyl esters on the basis of unsaturation in the first dimension and then to separate groups by conventional non-polar GCMS in the second dimension.
Artículo. 626Kb
Microextraction Packed Sorbent (MEPS): Analysis of Food and Beverages .
MEPS is a development of conventional SPE that has miniaturised the sorbent bed so that it can be incorporated into the sample path without voids.
Typically, a MEPS method reduces sample and reagent consumption by several orders of magnitude over conventional methods. Extraction performance is comparable to conventional SPE because the MEPS sorbent bed retains the same dimensional ratios of the conventional device and adaption of existing methods is achieved by scaling all steps in proportion to the bed volumes (typically 1 mL for SPE and 10 μL for MEPS). The small scale of the MEPS device allows elution in a small volume and so the entire extract may be analyzed rather than only using a portion of the prepared extract in a conventional experimental design. SPE and MEPS are not the same as SPME or SBSE techniques. The former rely on solvent desorption and use a mono-layer extraction surface with a very large surface area. The latter are immobilised liquid extraction techniques that are typically used in thermal desorption mode.
Artículo. 484Kb

The Determination of Urinary Metabolites of Dextromethorphan by Meps™-Esi-Lcms.
Micro Extraction by Packed Sorbent (MEPS™) is an adaptation of SPE into a miniaturized device with a typical void volume of less than 10 μL. With operating volumes of this scale and its compatibility with autosampler syringes, MEPS™ allows the specificity of the solid-phase process to be harnessed for digital chromatography using discontinuous changes in solvent polarity. The eluant volumes are sufficiently small to be injected directly into a HPLC system and therefore permit the use of solid-phase extraction methodology in real time with the HPLC.
In this application, we describe the analysis of naturally voided human urine samples that were collected following the administration of single doses of dextromethorphan for both the parent drug and its urinary metabolites. The effectiveness of MEPS™ is compared with the same sample prepared off-line using conventional cartridge SPE. The method was used to demonstrate the effectiveness of MEPS™ for extraction
of biological fluids for LCMS analysis
.

Artículo. 792b
MEPS Online KIT Hoja Producto. 408Kb
MEPS Hoja Producto. 315Kb

Copyright© 2006-2014 CromLab S.L. Prohibida la reproducción total o parcial sin consentimiento escrito del propietario.